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Kidney exchange has been studied extensively from the perspective of market design, and a significant focus
has been on better algorithms for finding chains and cycles to increase the number of possible matches. A more
dramatic benefit could come from incorporating compatible pairs into the mechanism, but this possibility has
been relatively understudied. In order to incentivize a compatible pair to participate in exchange, they must
be offered a higher quality match for the recipient that can be performed without adding extra waiting time.
In this paper, we make two main contributions to the study of incorporating compatible pairs in exchanges.
First, we leverage the recently proposed Living Donor Kidney Profile Index (LKDPI) to measure match quality,
and develop a novel simulator (based on data from a major transplant center) for the joint distribution of
compatibility and quality across pairs. This simulator allows us to study the benefits of including compatible
pairs under different models and assumptions. Second, we introduce a hybrid online/batch matching model
with impatient (compatible) and patient (incompatible) pairs to capture the need for immediacy. We introduce
new algorithms for matching in this model, including one based on online primal-dual techniques. Overall,
our results indicate great potential in terms of both increased numbers of transplants of incompatible pairs
(almost doubling the number transplanted) as well as improved match quality for recipients in compatible pairs
(increasing expected graft survival by between 1 and 2 years). The results are also promising for hard-to-match
subpopulations, including blood group O recipients.
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1 INTRODUCTION

In the end stages of renal failure, when a patient needs a transplant, one excellent option, when
available, is to receive a kidney from a living donor who is willing to donate to them. Close to a
third of kidney transplants annually in the US are living donor transplants." As of today, most
living donor kidney transplants match recipients directly with a donor willing to donate a kidney
to that specific recipient. However, in some cases the donor and the recipient may not be medically
compatible (due to ABO blood-type incompatibility or a positive crossmatch), in which case they can
enter a kidney exchange, a type of barter market where incompatible donors donate to others with
the understanding that their recipient will receive a medically compatible kidney from someone
else [1, 41, 43, 45].

While paired kidney donation of this kind has had success in the United States, a raft of co-
ordination problems and exchange fragmentation has prevented it from accounting for a truly
significant fraction of transplants. One proposal to transplant more recipients from incompatible
pairs has been to incorporate compatible pairs into exchanges [27]. While prior work has estimated
the possible benefits of such donation in terms of the number of additional patients that could
be transplanted from incompatible pairs, the recent development of new metrics for the quality
of a living donor transplant [36] present an opportunity to reassess the possible benefits in the
context of realistic models of compatible pair behavior, while also evaluating benefits in terms of
both additional transplants made possible and improved outcomes from transplants. Further, it
is reasonable to believe that compatible pairs may be more willing to enter exchanges if (1) their
waiting times are kept low, and (2) they have a more precise idea of the potential benefit to doing
SO.

In this paper, we work towards a realistic model of kidney exchange with compatible pairs that
incorporates these constraints. Our two main contributions are in explicitly incorporating match
quality into the model, and in introducing a model of weighted hybrid online/batch matching with
impatient and patient agents and analyzing algorithms for this model. We build and calibrate our
models with data from a major transplant center, and by doing so we are able to better estimate the
benefits of incorporating compatible pairs into kidney exchanges.

Modeling match quality. While kidney exchange has typically been modeled in a framework
where the goal is to maximize the number of transplants, anecdotally it is clear that surgeons
consider the quality of matching in their decision-making about which transplants to proceed
with. Quantifying match quality in the context of kidney exchange could provide a sounder basis
for decision-making, and, as argued above, provide a reason for compatible pairs to enter into
exchanges. It would also contribute a real-world domain for research on matching with cardinal
utilities [6].

Our approach here is to estimate expected survival of a graft from the recently proposed Living
Donor Kidney Profile Index (LKDPI) [36], and use this as our measure of quality.? How beneficial could
consideration of match quality be? The answer to this question depends largely on the heterogeneity
of match qualities across pairs. At one extreme, LKDPIs across pairs could be completely independent
of the original LKDPIs within the pairs. This would correspond to maximally heterogeneous match
qualities and offer the highest possible benefits to recipients in compatible pairs of participating in
the exchange. At the other extreme, LKDPIs could be completely determined by the characteristics

Thttps://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats

2LKDPI itself is a somewhat complex number to interpret. It is intended to be on the same scale as the KDPI for cadaveric
kidneys, which is a percentile measure. Thus an LKDPI of 10 indicates that the kidney is comparable to the 10th percentile
of cadaveric kidneys in terms of quality (with lower numbers being better). However, since some living donor kidneys can
be better than any cadaveric kidney, LKDPI values can also be negative.
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of the donor or the recipient in a pair, in which case there would be no social gains from trade [7].
We use detailed data on compatible pairs that have been transplanted at a major US transplant
center over three years, and perform counterfactual simulation experiments confirming that the
distribution of match quality (LKDPIs) from “external” donors is far from independent of the match
quality within a compatible pair, and this has significant implications on the possible gains from
trade to the compatible pairs. We also provide evidence that the variability is largely driven by
characteristics of the donor rather than the recipient, so there could be benefits from increasing the
pool of possible donors, as has recently been suggested [26]. There are, however, some pairwise
match characteristics that impact match quality (for example, HLA mismatches and body weight
ratios), and lead to some potential “gains from trade”

We use a novel dataset which contains data on 184 living donor kidney transplantations that took
place at a major transplant center (henceforth “Center”) from 2014-2016 to construct a minimal
simulator that produces realistic LKDPI / match quality values and closely matches the charac-
teristics we observe in the data. Paired with the standard Saidman simulator [46] for generating
recipient-donor pairs and compatibilities, this enables us to simulate realistic living donor kidney
scenarios of any size with compatible and incompatible pairs.

A hybrid static-dynamic matching model. Compatible pairs may not be willing to wait even
in order to find a potentially better match. In order to study a minimal departure from current
practice, therefore, we introduce a hybrid matching model where the incompatible pool consists of
patient agents who wait for a matching to be run on the pool (as is standard in the kidney exchange
literature [2, 3, 11, 21-23, 48]), but compatible pairs are impatient and match greedily (with a pair
from the incompatible pool if it improves the match for the compatible-pair recipient and directly
from donor to recipient otherwise), as is assumed in truly dynamic markets like dating or rideshare
[13, 29].3

In our model, there is a pool of agents that are waiting until a specified time T at which a batch
matching or clearing (which can include cycles of length > 2) will be run, and a set of agents that
enter dynamically between time 0 and time T. The pool of agents is embedded into a weighted
compatibility graph, where edges exist between two agents if a match can be made between them,
and weights w;; reflect match quality. An agent entering dynamically is compatible with some
subset of the pool; if it does not match through the pool, it receives a value w;. While this directly
models the kidney exchange setting with compatible pairs, the model itself is applicable to any
matching scenario with patient and impatient agents.

The typical tradeoff in dynamic matching is between the known immediate value of a particular
match and the unknown expected value of keeping agents around. In our case, that expected value
now has two components, one based on the value of an agent to the set of dynamic arrivals, and one
based on the value within the static set, which is known, but may itself change due to departures
by other agents by the time the final static match takes place. We design a new algorithm for this
type of hybrid online matching problem — ODASSE, for Online Dual Assignment Using Shadow
Survival Estimates — motivated by the online dual assignment method [18, 32]. The algorithm is
based on estimating values of agents in the static pool using both knowledge of the statistical
properties of the population as well as information about the specific graph of static agents in any
given problem.

Results and implications for incorporating compatible pairs in kidney exchange. The benefit from
including directed donation (compatible) pairs in kidney exchanges can arise from two fronts: (1)
an increase in the number of incompatible donors who find matches; (2) an increase in the quality

3Note that this differs from repeated batch matching [5], where agents arrive and a static matching takes place periodically.



of matches. We combine our compatibility/LKDPI simulator with the hybrid matching model in
order to estimate the (minimal) potential benefits along both these fronts in a realistic manner.

We find that with compatible pairs joining the kidney exchange, the percentage of matched
incompatible pairs increases substantially. Even in our pessimistic model where compatible pairs
will not wait at all for a potential better match from the incompatible pool, more than 74% of
incompatible pairs are matched, compared with 54% when the two- & three-cycle swapis only run
within the incompatible pairs.

These results are similar to those of Gentry et al [27], who however focus only on compatible
recipients gaining a donor age benefit. Our methods also allow us to estimate the benefits to
recipients in compatible pairs, and we estimate an increase of 1.5 years in expected graft survival
among recipients from compatible pairs.

We also look at the effects on the hard-to-match subpopulation of blood group O recipients. We
estimate that the positive impacts on blood group O recipients are more substantial than in the
general population (an increase from 32% to 62%).

By bringing quantitative estimates of these benefits into the light, we can inform policy debates.
For example, how much expected benefit would be needed to convince compatible pairs to enter
an exchange? The benefits could be even higher if compatible pairs were also patient — how long
would they be willing to wait for a better match? These are all questions that can begin to be
addressed from the foundation of the models and simulator we develop in this work.

2 KIDNEY EXCHANGE MODEL

In this section we describe the basics of kidney exchange. We largely follow Dickerson and Sand-
holm’s 2015 description. A kidney exchange can be represented as a directed compatibility graph
G = (V,E) [41-43]. Each vertex in the graph is a patient-donor pair in the pool. A directed edge e
is constructed from vertex v; to vertex v; if the patient v; is compatible with the donor kidney of
v;. Edges exist or do not exist due to medical characteristics (most importantly blood type, tissue
antibodies and antigens) of the patient and the donor. There may also be other logistical constraints,
but those are not relevant for our work here. In this pool, the donor of vertex v; is willing to give
her kidney if and only if the patient of v; receives a kidney. A weight w, can be assigned to an edge
e. While this typically has been used in the literature to represent the priority of a transplantation
(and therefore the utility to the system in some senses), we use it to represent the match quality
when recipient v; receives v;’s donor kidney (we discuss the function we use to determine match
quality in the next section). In this graph, a sequence of transplants occurs when several vertices
form a cycle c. A k-cycle refers to a cycle with exactly k pairs. In this paper, we only consider
2-cycles and 3-cycles, as is typical in fielded kidney exchange (incorporating cycles longer than 3
offers limited benefit given logistical constraints). Fielded exchanges also gain from chains, where
an altruist donor without a paired patient enters the pool and start a directed path of transplants.
We do not include chains in this work.

In this paper, a matching M is therefore a set of disjoint cycles in the compatibility graph G. The
cycles must be disjoint because no donor can give more than one of her kidneys (some recent work
explores multi-donor donation [25, 26] but we do not consider this here). Given a pre-defined utility
function u : M — R and the set of all legal matchings M, we are trying to find a matching which
maximizes u, M* € arg max,. s #(M). Kidney exchanges typically find the maximum weighted
cycle cover, formally, u(M) = X car 2iece We- In this paper, we consider two objectives, the number
of matches (effectively w, = 1Ve), and expected total graft survival (where w, is defined as the
expected graft survival for the recipient in edge e).

An integer programming (IP) solver is usually used to find the optimal solution [1, 9, 15, 21].
We use a formulation based on the position-indexed chain-edge formulation (PICEF) [21] method



to find the optimal solution when doing two- & three-cycle swap. Further details of our specific
formulation are in Section 6.

3 MODELING MATCH QUALITY

Historically, much work on matching (and welfare economics broadly) has focused on ordinal pref-
erences rather than cardinal utility [6]. This sidesteps the problem of having to make interpersonal
comparisons of utility, and research has focused on outcomes in terms of objectives like stability and
Pareto optimality [38]. However, with the increasingly important social roles played by matching
mechanisms [19, 20, 39, 44], it is imperative to understand the outcomes of mechanisms in terms
of overall social welfare (however this is defined for a given application) as well as distributional
effects. There has been increasing interest in recent years in both the study of dynamic weight
matching algorithms [8, 24] and consideration of specific models of utility [12, 28, 34, 37].

There is value in traditional parametric models that are used for utility, and these have been
central to model development. Examples of such models include utilities that decay exponentially
in waiting time [2, 4], and random utility models for specific match pairs [17]. However, a common
criticism of such models is that it is unclear how general or valuable results are when the utility
model itself is not grounded in reality. In our case, we are explicitly looking for a realistic model
that can be used for decision-making. Further, in order to convince compatible pairs to enter kidney
exchanges, we must be able to quantify the expected benefit to them in some meaningful manner,
therefore, we need an individual model of match quality that can be reasoned about from the
perspectives of agents in the market. One important consideration that we defer to future work
is the waiting cost to agents in terms of cost and quality of life. For compatible pairs, this is a
complex modeling problem from a practical standpoint, because the baseline waiting time is itself
highly variable. The time from initial workup to transplantation for a compatible pair is at least
several months long because of the barrage of necessary testing, and for part of this time the pair
is not even sure that they will be judged compatible. Therefore, in this paper we focus on match
quality, and subject our analyses to the pessimistic assumptions that compatible pairs must match
immediately.*

Quantifying match quality. Transplant sur- 20 : : : : :
geons often have to make decisions on whether
a proposed transplant is worthwhile to proceed \
with. The Kidney Donor Profile Index (KDPI)
was developed as a means of assessing the qual-
ity of a cadaveric (deceased donor) kidney [40].
Recently, the Living Kidney Donor Profile In-
dex (LKDPI) has been proposed as an analog
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Fig. 1. An exponential curve fits the graft half-life as a

score of 4 implies that the kidney is in the “top
function of LKDPI.

4% of cadaveric kidneys. LKDPI is intentionally
designed to be on the same scale (as mentioned in the Introduction, since living donor kidneys can

4The question of how to analyze waiting cost from the perspective of the matching market is also complex; however,
one reasonable way to think about it is as costs to the healthcare system. For example, dialysis costs $70,000-$100,000
per year [31, 33, 35], and this is a cost that must be borne by some agent (individuals, private insurance, hospitals, or the
government). Incorporating this can be useful when the modeling task is to assess matching policies and how they change
costs over the entire system, rather than from the perspective of individual agents, hospitals, and so on.



be better than any cadaveric kidney, the LKDPI often takes negative values as well). Therefore,
optimizing for LKDPI, while a useful proxy, is semantically ill-founded. However, since LKDPI is
computed based on a survival model (Cox regression [16]), one can translate the model to a model
of expected graft survival (or graft half-life), the survival time of the transplanted organ in the
donor [30].> We have found that an exponential curve fits the graft half-life as a function of LKDPI
almost perfectly (see Figure 1), and can thus estimate expected graft survival as 14.78¢0-01239%
where x is the LKDPI. We can use this measure in place of LKDPI where it is more appropriate.®
Thus the edge weight w, in each cycle is defined as the estimated expected graft survival of the
recipient.

4 DRIVERS OF MATCH QUALITY: ANALYZING TRANSPLANT CENTER DATA

In this section we analyze actual data from transplants in terms of match quality, to gain an initial
empirical understanding of the potential for “gains from trade” because of heterogeneity in pairwise
match quality. In order to do so, we perform a counterfactual analysis using detailed data from
only compatible pairs.

4.1 Data description

Massie et al 2016 come up with the LKDPI measure based on several important characteristics for
determining graft survival. We gathered de-identified data on all donor and recipient characteristics
that are used in computing LKDPI from all directed living-donor transplants performed at the center
in a three year period (2014-2016). There were 166 such transplants with complete characteristics
for calculating LKDPI and graft survival; 121 of them also include complete HLA antibody and
antigen information.” The distribution of each characteristic is shown in Table 1. We also analyze
the correlation of every pair of characteristics, shown in Figure 2, which serves as a fundamental
building block for designing the simulator in Section 5.

4.2 Counterfactual analysis within the center

Typically, if a donor and recipient are deemed medically compatible, a directed transplant is
performed, with the donor’s kidney going to the recipient. However, there may be cases where the
match quality is low even if they are compatible, and perhaps the recipient could receive a better
kidney through an exchange; for example, they may be able to receive a kidney from a younger
donor, or avoid an immunologically risky donor/recipient combination, like child to mother or
husband to wife [27]. Such scenarios are hypothetical, and may seem unlikely at first glance. To
validate our conjecture, for these donor-recipient pairs, we computed the expected graft survival
(EGS) of each pair, and then performed counterfactual simulations to assess the potential to improve
outcomes. The two counterfactual simulations share a Pareto improvement restriction—no recipient
may receive a kidney with a worse quality (shorter EGS) for them than that of the kidney from
their original paired donor.

Optimal. In the first simulation, we find the best matching, allowing arbitrary length cycles;
this can also be treated as a bipartite matching problem (with the restriction that the matching
must be perfect) between donors on one side and recipients on the other.

5 After graft failure, the donor typically needs another transplant.

®One could also use expected graft survival as input to an expected “Quality Adjusted Life Year” (QALY) [14, 47, 49]
computation over the lifetime of the recipient.

"We do not have data for the remaining 45 pairs simply because of a technical change in the software system; there is no
selection bias.



Mean s.d.

Donor Age 48.22 12.68
Donor eGFR 98.11 15.08
Donor Systolic BP 124.14 13.11
Donor BMI 27.78 4.46
Recipient Weight (Female) 180.7 42.26
Recipient Weight (Male) 190.34 39.9
Donor Weight (Female) 160.75 30.06
Donor Weight (Male) 200.8 32.8
Donor Sex F: 0.7 M: 0.3
Rec Sex F:0.35 M: 0.65
Donor African-American Y: 0.05 N: 0.95
Donor Cigarette Use Y: 0.32 N: 0.68
Donor/Rec Related Y: 0.50 N: 0.50
Donor Blood Type 0:0.6, A: 0.3, B: 0.07, AB: 0.03
Rec Blood Type 0:0.46 A: 0.39 B: 0.12 AB: 0.03
Donor/Rec ABO compatible Y: 0.88 N:0.12
Donor/Rec related Donor/Rec unrelated

Donor/Rec HLA-B Mismatches 0:0.18,1: 0.32,2: 0.5 0:0.01, 1: 0.1, 2: 0.89
Donor/Rec HLA-DR Mismatches 0: 0.13, 1: 0.06, 2: 0.81 0: 0.01, 1: 0.06, 2: 0.93

Counterfactual Matrix: all unrelated
Donor/Rec HLA-B Mismatches 0: 0.009, 1: 0.091, 2: 0.9
Donor/Rec HLA-DR Mismatches 0: 0.02, 1: 0.04, 2: 0.94
Table 1. Distribution of each characteristic of the center’s data. F/M means Female/Male, Y/N represents
Yes/No, and Rec is a shortening of Recipient.

Two and Three-cycle swap. In the second simulation, we only allow either a direct donation
from the donor to the recipient or through a two- and three-cycle kidney exchange, to more
closely approximate realistic logistical constraints.

We consider two subsets of the data. The “complete” 166-pair subset, assuming no HLA incom-
patibilities, and the “restricted” subset of 121 pairs for which we have complete antibody/antigen
information and can determine all incompatibilities and rule out such transplants. The distribution
of EGS and corresponding LKDPI among the real pairs and in the results of our counterfactual
simulations are shown in Figure 3. The mean and median EGS and LKDPIs are given in Tables 2
and 3.

We can see there is a median improvement of 1.93 years of expected graft survival for the
Optimal and 1.38 years for the two- & three-cycle swap (over a median half-life of 10.84 years). We
also see that including compatibility constraints itself does not have a huge effect on the results
(some of the improvement in the larger set is simply due to having a thicker market). Beyond the
specific results, it is surprising to see the high number of transplants that were performed with
LKDPIs above 50, since these indicate that the average cadaveric kidney would have been better for
the recipient, in contrast to the conventional wisdom that living donor kidneys are always better.
The optimized matches from the counterfactual “exchange” are much better, with many fewer “bad”
matches and many more with LKDPI of 20 or lower, predictive of excellent outcomes.
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Fig. 2. Correlation matrix of each pair of characteristics.

Optimal Two&Three Original Optimal Two&Three Original
-cycle Swap -cycle Swap
Mean 11.44 10.88 9.80 Mean 11.58 11.14 9.67
Median | 11.39 10.84 9.46 Median | 11.67 11.18 9.34
(a) Restricted subset (121 pairs) with HLA anti-(b) Complete subset (166 pairs) without HLA anti-
gen/antibody compatibility constraints gen/antibody compatibility constraints

Table 2. Mean and median EGS for two counterfactual simulations, compared to reality over the last three
years at the center.

Two&Three Two&Three
imal .. imal ..
Optima cycle Swap Original Optima cycle Swap Original
Mean 23.99 27.69 36.10 Mean 23.46 25.50 37.15
Median 21 25 36 Median 19 22.5 37
(a) Restricted subset (121 pairs) with HLA anti-(b) Complete subset (166 pairs) without HLA anti-
gen/antibody compatibility constraints gen/antibody compatibility constraints

Table 3. Mean and median LKDPI for two counterfactual simulations, compared to the reality over the last
three years at the center.

4.3 Discussion

This is a proof-of-concept for the potential of improving quality of matching. One immediate
question arises from the fact that we are using three years worth of data on recipients and donors
in a static setting; this is obviously unrealistic. However, the main point is to estimate realistic
distributions from data; we can use projections to then analyze differently-sized markets (from



5 Expected graft survival distribution N LKDPI distribution

I Optimal with constraint BN Optimal with constraint
BN Two&Three-cycle Swap 25 B Two&Three-cycle Swap
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Expected graft survival LKDPI
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Fig. 3. Distribution of the expected graft survival (left) and LKDPI (right) of the original matched pairs
and matched pairs in the two counterfactual simulations, using the restricted subset of real data with HLA
antigen/antibody compatibility constraints from the center over the last three years.

smaller ones to larger ones that could be realized through regional pooling or already-functioning
national exchanges). We turn to these questions and beyond in the next section.

5 DESIGNING A COMPATIBILITY+LKDPI SIMULATOR

A central goal of incorporating compatible pairs in exchanges would be to improve the number of
matches, in addition to improving match quality. This could also lower costs for transplant centers
by allowing for more internal matches where the transplant center does not need to go to a regional
or national exchange to find a match for an incompatible pair.® In order to estimate the possible
benefits more systematically over different possible population sizes, we need to efficiently and
correctly simulate LKDPIs over donor and recipient populations.

This would be simple if LKDPIs were distributed in a manner that was easy to correctly estimate,
for example, independently, or independently conditional on the LKDPI of the original compatible
pair. Unfortunately, this turns out not to be the case. To get a simple benchmark of how much this
may affect the results, we can simulate different distributions based on data from the center.

We first build a counterfactual matrix of estimated graft survival based on the complete (166-pair)
data by calculating LKDPI values for each of these 166 pairs. We then investigate the expected
graft survival of donor-patient pairs under the Optimal and two- & three-cycle swapmatching
algorithms when resampling the matrix in different ways. To simulate independent LKDPIs, we
resample individual LKDPIs from the whole matrix. To simulate donor-dependent LKDPIs, we
shuffle all donors for a given recipient, and to simulate recipient-dependent LKDPIs, we shuffle
all recipients for a given donor. The results are shown in Table 4. The first row shows statistics
from the original compatible matching. As we see, most of the methods for generating LKDPIs
vastly overestimate the possible gains, and the evidence is consistent with the observation that the
determination of LKDPI/expected graft survival is largely based on the donor’s characteristics [36].
These results demonstrate the need for a good simulator.

The central empirical facts that allow us to construct an efficient simulator are analyses of the
joint distributions of variables involved in determining compatibility (PRA and ABO compatibility,
based on the simulator of Saidman et al. (2006)) and computing LKDPI (See Table 1), and analysis of
the possible underlying mechanisms of dependence. In particular, compatibility is solely a function

8This could have positive and negative effects overall, by perhaps increasing fragmentation, but lowering costs. However,
many centers choose not to participate in broader exchanges much of the time in practice, for a variety of reasons.



of blood type and antibodies, while LKDPI considers many other factors, most of which have
limited relationship to those (Figure 2). Since the state of practice in kidney transplantation has
been to always assume that any living donor is excellent (a practice called into question by our
results above), it is unlikely that there is any selection bias in the characteristics we sample for
typical compatible pair arrivals. We first generate a donor-recipient pair, with all LKDPI-related
characteristics generated sequentially in a manner that respects the data distributions in Table 1
and the correlation structure shown in Figure 2. We then generate the PRA (percentage reactive
antibodies) and compatibility based on the Saidman model. Details of our simulator are available in
an online appendix. The last line of Table 4 shows that the simulator produces results very close to
the real data.

EGS EGS EGS | LKDPI | LKDPI | LKDPI
original | 2&3 swap | Optimal | original | 2&3 swap | Optimal
Original
166 dutaset 9.67 11.14 1158 | 37.15 25.50 22.46
Sample from 9.23 14.40 1530 | 4051 2.67 25
the whole matrix
Shuffle all donors 9.19 14.16 14.94 | 4092 411 -0.47
per recipient
Shuffle all recipients | | 11.74 1250 | 40.70 20.6 15.49
per donor
Sample from
; 9.38 11.40 11.80 | 39.21 24.50 20.09
the simulator

Table 4. EGS and LKDPI comparison for different sampling methods and different market clearing algorithms.

6 INCLUDING COMPATIBLE PAIRS IN KIDNEY EXCHANGES

We now turn to exploring the benefits of including compatible pairs in kidney exchange. In particular,
we introduce a hybrid online/batch matching model with patient agents and impatient agents.
Patient agents represent incompatible pairs. They are waiting in the market and can be matched at
any time. Impatient agents represent compatible pairs who arrive sequentially. Since compatible
pairs can always opt for internal transplant, we consider the setting in which they are not willing
to wait in the market and need to be matched immediately upon arrival. Moreover, a compatible
pair is only willing to participate in the match if the recipient of the pair receives a kidney of higher
quality.®

6.1 Problem formulation
There is a pool of patient agents (modeling incompatible pairs) who can be matched at any time, and

a set of impatient agents (modeling compatible pairs) arrive sequentially and need to be matched

9In practice, incompatible pairs also may arrive and depart dynamically; however, since they cannot demand immediacy
and the incompatible market clears periodically, this model is a reasonable approximation.



immediately upon arrival. We denote a matching problem as a k-matching problem if up to k
agents can be involved in a match (which corresponds to a k-cycle in kidney exchanges). Moreover,
impatient agents can perform “self-matches” and obtain utility without matching with other agents
(this could of course be set to 0 for modeling other applications where patient agents must match
immediately with some other agent). For ease of exposition, in this section, we focus on 2-matching
problems (e.g., only directed (compatible) transplant and 2-cycles are allowed in kidney exchanges).
We discuss the generalization to k-cycles in Section 6.3.

For any positive integer K, let [K] denote the integer set {1, ...,K} and [K]* denote the set
{0,...,K}. There are I patient agents, indexed by i € [I], and T impatient agents, indexed by
t € [T].Let N = T+I; we use n € [N] to index all agents, with the first T agents being the impatient
agents and the rest being the patient agents.

There are three types of matches: matches between impatient agents and patient agents, matches
between patient agents and patient agents, and self-matches of impatient agents. We use x,, ; € {0, 1}
as the variable to indicate whether a match is made between agent n and agent i (we use i = 0
to denote self-match), where n € [N] indexes the set of impatient agents and patient agents, and
i € [I]* indexes self-matches (i.e., i = 0) and the set of patient agents (e.g., i € [I]).

e When i=0, x, o represents a self-match of agent n.

e When i>0and n<T, x,, ; represents a match between impatient agent n and patient agent i.

e When i >0 and n>T, x,, ; represents a match between patient agent j =n—T and patient
agent i.

We let w, ; denote the value (or weight) for the match between agent n and agent i. Our framework
can deal with any model of cardinal utilities, but for our purposes in this paper we describe how to
set the values of wj, ; for the kidney exchange application. When i # 0, we set w, ; to be the sum
of the expected graft survivals of the recipients for pair n and pair i if the two pairs exchange their
kidneys. We set w,, ; = 0 if there is no acceptable kidney exchange between two pairs (including
the case where impatient agent n is medically compatible with patient agent i, but the internal
transplant is higher quality for the recipient in n). When i = 0, we set w,, o to be the utility generated
by internal transplant. Naturally w, o = 0 if n > T since n > T indexes incompatible pairs who
cannot perform internal transplant.

Integer program formulation. We are now ready to formulate the 2-matching problem (up to
two agents are involved in a match). We first consider an offline formulation, in which we assume
we know which impatient agent is arriving at each time ¢. Our problem can be formulated as the
following integer program (IP):

xn,i € {0,1},Vn € [N],Vi € [I]"

The objective is to maximize the total utility, which can be written as ), 3}; Wy, iXn,i. The first
constraint ensures each impatient agent can either self-match (e.g, x, o = 1) or be matched to at



most one patient agent. The second constraint ensures each patient agent can only be matched to
at most one agent, either an impatient agent or a patient agent.

6.2 Matching Algorithms

In practice, the integer program above cannot be directly solved since we do not have knowledge
of future impatient agent arrivals. Hence we must derive an algorithm that can make matching
decisions online using only knowledge of the static pool, a single arriving impatient agent, and
overall distributional properties. One natural, albeit computationally expensive, choice is to set up
and solve the full IP after each arrival of an impatient agent, but only perform a match the impatient
agent is involved in at that time. We term this algorithm Online Assignment via Exhaustive Search
or OAES. Below we propose another algorithm, ODASSE (Online Dual Assignment Using Shadow
Survival Estimates), based on online primal-dual techniques.

6.2.1 The ODASSE algorithm. In ODASSE, instead of working with the integer program, we will

work with the relaxed linear program that allows the x, ; variables to take on fractional values in

[0, 1]. This relaxation enables us to derive the dual and utilize primal-dual techniques to obtain an

online assignment algorithm (note that our proposed algorithms only make integer assignments).
The dual of the above linear program can be written as

T I
min Z ay + Z Bi
=1 i=0
st.wg;—ay— i <0,¥t €[T],ie[I]"

weaji — B —Bi <0, Vie[l],je[I]
a, fi 2 0,Vt € [T],i € [I]
Po=0
where a;, f; are the dual variables that can be interpreted as the estimated values of compatible

pairs and incompatible pairs respectively. ffy comes from self-match and is always set to 0. Analogous
to shadow prices in constrained optimization, we call f; the shadow survival of patient agent i.

Online Assignment. Given the primal-dual formulation, we now turn to formulating the online
assignment rule. We first state an additional assumption that is easy to satisfy in practice and is
useful in our discussion. We assume that for each wy ; # 0, we can add a small perturbation to the
weight value, which can help remove potential tie-breaking issues. Since this perturbation can be
arbitrarily close to 0, the influence on the optimal solution can also be arbitrarily small.

Online dual assignment using optimal {f;}. First we assume an idealized scenario in which
there exists an oracle which provides us with optimal values of f; in the dual problem. From
complementary slackness, we know that, for 1 < ¢t < T, the optimal assignment x;"i should satisfy
x; (we,i -} — B7) = 0.

From the constraint, we have af > w;; — f}. Since the objective is attempting to minimize
2. @, therefore oy = max;{w; ; — f;}. Since we have the small perturbation assumption, there is a
unique i such that w;; — a; — f; = 0. Denote it as i*. We get a; = {wy,;+ — f}.}. We can conclude
i* = argmax;{w;,; — fi; }.

Therefore, in the optimal primal, we should set x} ;. = 1 and set x; ; = 0 for all i # i* to satisfy
complementary slackness. We can apply the same arguments for the constraints w;,j; —f; —f; <0
and get the assignment decision for patient agentn = T+1, ..., T +I, as summarized in Algorithm 1.
Note that it is easy to check that this assignment algorithm satisfies both primal and dual feasibility.
Furthermore, all of the assignments x;‘l’ ; are either set to 1 or 0. Therefore, ODASSE generates the



optimal assignment x,, ; when given optimal f; for the 2-matching problem as specified in the
integer program.

Estimating {f;}. In the above algorithm, assume optimal f} is given, we can make optimal online
assignments without knowing which impatient agent will arrive in the future (i.e., we do not need
information about a;). In practice, we do not have access to the true ;. We propose two approaches
in estimating f3; values:

e Learning from past populations. By solving the dual on simulated populations, we are able to
gather training data that can be used to approximate f; without knowing the sequence of arriving
compatibles, using a machine learning approach. We train off two major information sources: 1)
the demographic and medical information of an incompatible pair (all the individual features
needed to compute LKDPI) and 2) the initial graph state of the incompatible pairs. The latter of
these 2 takes the form of the f; value when solving the dual on just the incompatible pool. We
find that a linear model is a good predictor of f3;, performing as well as more complex approaches
like random forests. It is also worth noting that the initial graph state of the incompatible pairs
is an important feature for prediction.

o Simulating future arrivals. Since we have access to historical populations, we are able to simulate
the arrivals of impatient agents and solve the optimal §; values for the simulated population. We
can estimate the f; values using the average of many simulations. We note here that we use a
method that re-simulates the future at every impatient agent arrival, since the current state of
the graph provides meaningful information. This is again computationally expensive.

Algorithm 1 Online Dual Assignment ({§;})

1: Input: {f;}

2: Initialize I = [I]*

3: fort=1,...,T do

4 Seti" « argmax; g{w:; — fi}

5. if i* equals to 0 then
6 Self-match impatient agent ¢
7. else
8
9

Match patient agent i* with impatient agent ¢
Setl « I\ {i*}

10: endif

11: end for

12: forj=1,...,Ido

13:  if jisin I then

14: Set i* « argmax; (1 {wr+j,i — Bi}
15: if wr, ;+ equals to 0 then

16: No match is found

17: else

18: Match patient agent j with i*

19: SetT « T\ {i*}

20: end if

21:  end if
22: end for




6.3 Extensions

So far, we have focused the discussion on 2-matching problems. However, our framework can
extend to other settings, including k-matching problems. Below we discuss a few extensions.

6.3.1 k-matching problems. Our framework can easily handle k-matching problems for any k (i.e.,
including up to k cycles in kidney exchanges). Below we first describe how to model 3-matching
problems and provide discussion on general k-matching problems.

In 3-matching problems (in kidney exchanges, this corresponds to allowing internal-transplant,
2-cycles, and 3-cycles in a match), we can add an additional dimension j € [I]* to our variables
to expand the formulation to perform matches between 2 or 3 agents. Our variable indicates the
match involving different agents:

Xn,0,0: self match of impatient agent n

Xn,i,0: impatient agent n and patient agent i

Xp,i,j: impatient agent n and patient agents i and j
XT+k,i,j: patient agents i, j, and k

We also need to calculate all weights of w,, ; ; with any given utility models. For example, in
kidney exchange, if i, j # 0, wp,; ; is the sum of the utility for the 3 kidneys exchanged in the 3-cycle.
With this new notations, we can again write down the primal and dual formulations. In particular,
the dual can be written as:

T I
min Z oy + Z Bi
t=1 i=1
st.wpij—oar—fi — P <0,V(n,i,j)

Wrik,ij — Bi — Bj — Br < 0,¥(i,j, k)
At, ,Bi = 0’ v(t7 l)

Po=0

Note that the constraints are very similar to 2-matching problems, except we need to sub-
tract an additional § value on the left-hand side of the first two constraints. Looking at the
first constraint, using complementary slackness, when impatient agent ¢ arrives, we choose
(i*,j*) = argmax; j{w;;; — fi — B;} to match with t. We can write down similar assignment
rules for the second constraint. The same derivations can easily extend to k-matching problems.
There will be k—1 and k f§ variables to be subtracted on the left-hand side of the first two constraints
of the dual. And we can derive the optimal assignment rules using complementary slackness.

6.3.2 Including chains. We note that fielded kidney exchanges often gain from chains, where an
altruist donor without a paired patient enters the pool and starts a directed path of transplants [10].
Technically, it is relatively straightforward to include chains in our framework. The formulation is
the same as the matching problem, the main change needed is to calculate weights based on the
edges on a chain (instead of on a cycle), and to estimate a value for the “leftover” kidney at the
end of a chain. This estimation will interact with the online formulation, and thus needs careful
modeling.

6.3.3  Dynamic pool of patient agents. In practice, pools of incompatible pairs are not static, but
are dynamically changing with pairs arriving and departing at each time interval. Our framework
can be expanded to account for this dynamic environment by setting wp ; ; = 0 unless there exists
a time when all pairs are present. Again, careful modeling of arrival and departure will be critical
to ensuring that the results are meaningful in this case.



6.4 Experimental Results

We now investigate the impacts of including compatible pairs in exchanges. The Oracle model (or
ODASSE with perfect information about f values) is an upper bound on what can be achieved under
the constraint that compatible pairs must be matched immediately, while OAES and the variants
of ODASSE with estimation of  values are specific algorithms that can make online decisions
without knowledge of the future. We compare our online matching algorithms with the baseline,
in which compatible pairs are always matched with their original donors, and incompatible pairs
are matched among themselves using two- & three-cycle swap.

Kidney matching environment. We use the simulator as described in Section 5. The simulator
generates donor-recipient pairs based on known blood type, tissue type and demographic feature
distributions in the population. Based on these, it can determine compatibility using the approach
of Saidman 2006, as well as the LKDPI score [36], between pairs. The LKDPI score can be mapped
directly to expected graft survival time, which provides a meaningful measure of match quality.
Each experiment we report consists of 500 simulations of 50 arriving compatible pairs with a pool
size of 100 incompatible pairs.!

Evaluation metrics. We evaluate performance on two main dimensions: (1) Overall match quality,
the expected number of years of total graft survival of all transplants; (2) The number of transplants
performed.

Baseline | OAES | ODASSE | Oracle

Matched proportion

. . . 54.4% 74.6% 70.6% 76.0%
of incompatible pairs

Expected graft survival

of compatible pairs g 1.1 11.2 11.4

Expected graft survival

of incompatible pairs 104 o8 96 10.0

Table 5. The matched proportion of incompatible pairs (Row 1) and the expected graft survival of compatible
(Row 2) and incompatible (Row 3) pairs, where Row 3 is conditional on being matched. The baseline in Rows
1 and 3 represents running two- & three-cycle swapwith only incompatible pairs and in Row 2 represents the
case where recipients from compatible pairs are always matched with their original donors. The ODASSE
algorithm reported here uses machine learning estimates for f§ values.

Results. Our headline results are in Table 5, which shows that including compatible pairs in
exchange, even with the immediacy constraint, can improve outcomes dramatically, matching 37%
more incompatible pairs, a 20 percentage point improvement in the match rate. For compatible
pairs, there is an increase of 1.5 years in the expected survival time of the transplanted kidney.
There is a slight decrease in expected graft survival for incompatible pairs, but this is conditional
on being transplanted. This is because of a “rival” effect. In order to incentivize compatible pairs to
participate, “better” quality kidneys have to be offered to those pairs. This is presumably more than
balanced by the substantially increased probability of receiving a transplant, given that you are
incompatible.

10While the arrival rates of compatible and incompatible pairs in the system are similar, because they match less often,
there are more incompatible pairs waiting at any given time interval than the number of compatible pairs that arrive.



6.4.1 Fairness. An important question is how the introduction of a new mechanism could impact
different subpopulations. While aggregate effects may appear strongly positive, it would be prob-
lematic if they came at the expense of specific subgroups. In kidney exchange, the focus is often on
two hard-to-match subpopulations: (1) Blood type O recipients, who can only receive kidneys from
Type O donors, and are thus matched at lower rates than those with other blood types; (2) Highly
sensitized patients, who have antigens likely to make them reject many donor kidneys (PRA> 90%).
We focus on the former here, because of changing practice (surgeons now believe the appropriate
hard to match PRA threshold should be 98%) and the complex interaction between HLA, blood
group, and PRA.

Since compatible pairs are always being matched, we only consider incompatible pairs here.
Figure 4 shows our main results. Using the OAES algorithm increases the proportion of blood
Type O recipients (in incompatible pairs) matched from 32% to 62%, a proportionally much higher
increase than for the general population of incompatible recipients. The increased proportion of
matches demonstrates that the gains in social welfare do not come at the cost of fairness for these
harder-to-match patients.

Another question that could arise about fairness relates to the result in Table 5 showing that
the expected graft survival (EGS) of incompatible pairs decreases in both algorithms compared
to the baseline. This is a complex issue; Table 5 shows EGS conditional on transplantation. More
incompatible pairs are getting transplants, however, so unconditional EGS increases. The decline is
for recipients with higher quality donors (because of the “rival” effect introduced by the need to
incentivize compatible pairs to participate with better donor kidneys).

Proportion of Pairs Matched by Algorithm

o
B =
=
[%]
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] © _|
= =
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o
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=
o (=}
=%
o
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0.75 0.62
=
I’
Pairs with recipients
Incompatible Pairs with type O blood

B Baseline (Compatible and Incompatible Separate)
O OAES optimized for number of matches

Fig. 4. Change in the proportion of the entire population and the subpopulation of pairs with blood type O
recipients in the incompatible pool that are matched when compatible pairs are included, using the OAES
algorithm to benchmark.

6.4.2 Comparison of online matching algorithms. Figure 5 compares the different algorithms for
matching. It is interesting to note that ODASSE with learned estimates of § achieves performance
better than the version with expensive repeated simulation, and that the performance of ODASSE
and OAES is so close to the oracle. This is also promising in the sense that better estimation of
could perhaps get even closer to optimal performance.
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Fig. 5. Box plots for the expected total years of graft survival and number of matches for the different
matching algorithms. The oracle algorithms solve the integer program with complete knowledge of future
arrivals of compatible pairs — one version (count) optimizes for the number of transplants, and the other
(quality) for the expected graft survival.

It is also worth commenting on run-time. ODASSE requires many initial runs to generate training
data and estimate f values, but is then very fast in the online phase. OAES is expensive: one run
with 50 compatible arrivals and an incompatible pool of size 100 takes 2-3 minutes on commodity
hardware, and does not scale well to larger instances. Nevertheless, OAES is likely sufficient for the
scale of problems dealt with in kidney exchange, since transplants cannot actually be conducted
immediately. ODASSE is likely a better choice in settings requiring close-to-real-time immediacy.

7 CONCLUSION AND FUTURE RESEARCH

Living donor kidney transplantation has proven to be an important domain for the development of
matching theory and algorithms. It is becoming increasingly important to study cardinal utilities
in kidney exchange, and we believe this could open up more fertile avenues for research. Our main
goal in this paper is to develop a robust framework for analyzing match quality in models of kidney
exchange. Our framework for modeling match quality is based on real donor and recipient data
from a major transplant center, and we introduce a hybrid online-batch matching model to capture
compatible pairs’ expected desire for immediacy. We use the model to estimate the benefits of
including compatible pairs in exchanges, in terms of both quantity and quality of transplants. We
find that if we were able to induce compatible pairs to join kidney exchanges, the percentage of
matched incompatible pairs would increase dramatically, and there would also be a substantial
increase in expected graft survival for recipients in compatible pairs. Quantifying the potential
quantitative benefits of participating through LKDPI may also make compatible pairs more likely
to join.

The development of our simulator for match quality should allow for future work on weighted
matching to use realistic weight distributions from a real application. In addition, our new model
of matching with patient and impatient agents also opens up interesting algorithmic questions.
Finally, there are many interesting modeling and policy questions for kidney exchange specifically
that can be pursued - particularly interesting ones include consideration of the tradeoffs between
waiting costs and improved match quality, and possible systemic effects of including compatible
pairs in exchanges, for example, changes in incentives for centers.
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